ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Roger Raman, John C. Thomas, David Q. Hwang, Garrard D. Conway, Francois Martin, Akira Hirose, Paul Gierszewski, Réal Décoste
Fusion Science and Technology | Volume 24 | Number 3 | November 1993 | Pages 239-250
Technical Paper | Fusion Fuel Cycle | doi.org/10.13182/FST93-A30198
Articles are hosted by Taylor and Francis Online.
Reactor particle fueling is one of the issues that remain to be resolved in the development of a tokamak fusion reactor. One of the most promising concepts of reactor fueling is the injection of high-speed compact toroids (CTs). Compact toroid formation and acceleration at the Ring Accelerator Experiment (RACE) device at Lawrence Livermore National Laboratory has shown that CT plasmoid velocities sufficient for center fueling fusion reactors can be achieved by using coaxial accelerators. The Compact Toroid Fueler (CTF) will inject high-speed, dense spheromak plasmoids into the Tokamak de Varennes (TdeV) to examine the feasibility of this approach as a fueler for future reactors. Here, a conceptual design study of the particle fueler for TdeV is presented. The issues of CTF design that are considered are formation and relaxation of an axisymmetric CT, optimization of accelerator performance to improve injector electrical efficiency, separation of formation and acceleration phases to improve injector reproducibility, minimization of entrained impurities in the CT, and minimization of neutral gas load to the tokamak following CT fueling. The CTF injector will test theories on CT/tokamak interaction related to reactor fueling. Among the eventual physics questions addressed are the multiple-pulse requirements for future injectors, the bootstrap current enhancement factor, CT fuel confinement times, impurity effects, plasma heating, injector electrical efficiency, and the effect of gas load on the tokamak following CT injection.