ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Roger Raman, John C. Thomas, David Q. Hwang, Garrard D. Conway, Francois Martin, Akira Hirose, Paul Gierszewski, Réal Décoste
Fusion Science and Technology | Volume 24 | Number 3 | November 1993 | Pages 239-250
Technical Paper | Fusion Fuel Cycle | doi.org/10.13182/FST93-A30198
Articles are hosted by Taylor and Francis Online.
Reactor particle fueling is one of the issues that remain to be resolved in the development of a tokamak fusion reactor. One of the most promising concepts of reactor fueling is the injection of high-speed compact toroids (CTs). Compact toroid formation and acceleration at the Ring Accelerator Experiment (RACE) device at Lawrence Livermore National Laboratory has shown that CT plasmoid velocities sufficient for center fueling fusion reactors can be achieved by using coaxial accelerators. The Compact Toroid Fueler (CTF) will inject high-speed, dense spheromak plasmoids into the Tokamak de Varennes (TdeV) to examine the feasibility of this approach as a fueler for future reactors. Here, a conceptual design study of the particle fueler for TdeV is presented. The issues of CTF design that are considered are formation and relaxation of an axisymmetric CT, optimization of accelerator performance to improve injector electrical efficiency, separation of formation and acceleration phases to improve injector reproducibility, minimization of entrained impurities in the CT, and minimization of neutral gas load to the tokamak following CT fueling. The CTF injector will test theories on CT/tokamak interaction related to reactor fueling. Among the eventual physics questions addressed are the multiple-pulse requirements for future injectors, the bootstrap current enhancement factor, CT fuel confinement times, impurity effects, plasma heating, injector electrical efficiency, and the effect of gas load on the tokamak following CT injection.