ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Scott R. Chubb, Talbot A. Chubb
Fusion Science and Technology | Volume 24 | Number 4 | December 1993 | Pages 403-416
Technical Paper | Nuclear Reactions in Solid | doi.org/10.13182/FST93-A30190
Articles are hosted by Taylor and Francis Online.
The effects that limit deuterium-deuterium (D-D) fusion in bound systems, as opposed to those limiting D-D fusion in free space, are the result of quantum-mechanical particle-particle wave function correlation, which may inhibit wave function overlap. Whether or not this occurs at room temperature is determined by system energy minimization, not Gamow theory. A counterintuitive example, known from atomic physics, that demonstrates how this alternative criterion may alter the relevant quantum mechanics is illustrated by the helium atom. At room temperature, near-complete overlap of the two helium electrons takes place when energy is minimized, while Gamow theory predicts negligible overlap. On the other hand, energy minimization does predict that no nucleus-nucleus overlap ever occurs in any normal molecule. In D+ ion band-state matter, D+-D+ overlap occurs if the distributed charge view of quantum reality is correct, in which case D+ band-state matter converts to 4He++ band-state matter, releasing heat throughout a crystal lattice. This occurs in the limit x → 1 in PdDx (in agreement with experiments), provided adequate crystalline order is present. Further deuterium loading requires that additional injected deuterium occupy ionic band-like states in which only a small fraction of each additional deuterium atom occupies a lattice unit cell. Then, in each nuclear reaction, again to minimize energy of the entire system, the energy is distributed over many lattice sites, inhibiting production of energetic particles. Theory shows that steady-state power is proportional to the loading current. These points are discussed. An expression for P is derived, and possible cold fusion reactions are summarized.