ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yasumasa Tsuji
Fusion Science and Technology | Volume 24 | Number 4 | December 1993 | Pages 366-374
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30187
Articles are hosted by Taylor and Francis Online.
The helical force-free equation, ∇ × B = αB, has been solved analytically in a toroidal coordinates system for a torus of arbitrary aspect ratio without the approximation of a large aspect ratio. The three-dimensional force-free equation is reduced to a scalar Helmholtz equation. A set of analytical solutions for the Helmholtz equation in the torus is presented. With these solutions, the eigenvalues have been obtained for an aspect ratio R/a ≥ 7.5 and toroidal mode number −5 ≤ n ≤ 14. The difference in the eigenvalue between a torus and a cylinder becomes large in the case of a small aspect ratio and a large toroidal mode number. However, the smallest eigenvalues and the corresponding toroidal wave numbers are found to be in close agreement with those of a cylinder for R/a ≥ 1.5.