ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
D. Das, M. K. S. Ray
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 115-121
Technical Notes on Cold Fusion | doi.org/10.13182/FST93-A30179
Articles are hosted by Taylor and Francis Online.
A large body of experimental observations has evolved with particular reference to deuterated palladium, a mechanism of fusion unique to condensed matter. The mechanism brings to focus the relevance of the electronic structure of the host lattice, indicating the features that are desired. Direct interaction of electronegative elements such as oxygen (as happens in electrolysis experiments) creates, through modification of the electronic structure, situations under which heavy electrons are manifested. In cases where an oxide interface is present, an analogous situation is created at the onset of an insulator-metal transition caused by the induced migration of deuterons through the layer. Screened by the heavy fermions, deuterons in such situations undergo transition to a more stable quasi-molecular state, (D+D+)2e−, with substantially reduced nuclear separation. Through quantum mechanical tunneling, fusion takes place in such a cluster with a yield of 10−1.5 s−1, a value consistent with observed excess heat production and near-surface occurrence of the phenomenon.