ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
D. Das, M. K. S. Ray
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 115-121
Technical Notes on Cold Fusion | doi.org/10.13182/FST93-A30179
Articles are hosted by Taylor and Francis Online.
A large body of experimental observations has evolved with particular reference to deuterated palladium, a mechanism of fusion unique to condensed matter. The mechanism brings to focus the relevance of the electronic structure of the host lattice, indicating the features that are desired. Direct interaction of electronegative elements such as oxygen (as happens in electrolysis experiments) creates, through modification of the electronic structure, situations under which heavy electrons are manifested. In cases where an oxide interface is present, an analogous situation is created at the onset of an insulator-metal transition caused by the induced migration of deuterons through the layer. Screened by the heavy fermions, deuterons in such situations undergo transition to a more stable quasi-molecular state, (D+D+)2e−, with substantially reduced nuclear separation. Through quantum mechanical tunneling, fusion takes place in such a cluster with a yield of 10−1.5 s−1, a value consistent with observed excess heat production and near-surface occurrence of the phenomenon.