ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
D. Das, M. K. S. Ray
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 115-121
Technical Notes on Cold Fusion | doi.org/10.13182/FST93-A30179
Articles are hosted by Taylor and Francis Online.
A large body of experimental observations has evolved with particular reference to deuterated palladium, a mechanism of fusion unique to condensed matter. The mechanism brings to focus the relevance of the electronic structure of the host lattice, indicating the features that are desired. Direct interaction of electronegative elements such as oxygen (as happens in electrolysis experiments) creates, through modification of the electronic structure, situations under which heavy electrons are manifested. In cases where an oxide interface is present, an analogous situation is created at the onset of an insulator-metal transition caused by the induced migration of deuterons through the layer. Screened by the heavy fermions, deuterons in such situations undergo transition to a more stable quasi-molecular state, (D+D+)2e−, with substantially reduced nuclear separation. Through quantum mechanical tunneling, fusion takes place in such a cluster with a yield of 10−1.5 s−1, a value consistent with observed excess heat production and near-surface occurrence of the phenomenon.