ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D. Das, M. K. S. Ray
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 115-121
Technical Notes on Cold Fusion | doi.org/10.13182/FST93-A30179
Articles are hosted by Taylor and Francis Online.
A large body of experimental observations has evolved with particular reference to deuterated palladium, a mechanism of fusion unique to condensed matter. The mechanism brings to focus the relevance of the electronic structure of the host lattice, indicating the features that are desired. Direct interaction of electronegative elements such as oxygen (as happens in electrolysis experiments) creates, through modification of the electronic structure, situations under which heavy electrons are manifested. In cases where an oxide interface is present, an analogous situation is created at the onset of an insulator-metal transition caused by the induced migration of deuterons through the layer. Screened by the heavy fermions, deuterons in such situations undergo transition to a more stable quasi-molecular state, (D+D+)2e−, with substantially reduced nuclear separation. Through quantum mechanical tunneling, fusion takes place in such a cluster with a yield of 10−1.5 s−1, a value consistent with observed excess heat production and near-surface occurrence of the phenomenon.