ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Lance L. Snead, Roger A. Vesey†
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 83-96
Technical Paper | Divertor System | doi.org/10.13182/FST93-A30176
Articles are hosted by Taylor and Francis Online.
The primary concerns in the design of a divertor component are the high heat fluxes (15 to 30 MW/m2) and the surface erosion due to plasma/wall interactions, along with the associated issue of plasma contamination. A continuous belt, which would pass between two rollers inside the vacuum vessel, is proposed as the divertor surface to provide higher heat flux handling capability as well as reduced total erosion. Thermal analyses indicate that a belt passing from one roller through the divertor region to a cooling roller can achieve a cycle-to-cycle steady state while maintaining acceptable temperatures. The belt speed determines the amount of plasma energy absorbed per cycle and thus determines the maximum belt temperature and the requirements of the cooling roller. The belt material initially considered is a metal matrix/carbon fiber composite in which the carbon fibers are oriented out-of-plane in a 1-mm-thick metal belt. The carbon fibers protrude from the plasma-facing side of the belt, presenting the plasma ions a low-Z surface to impact. Because the belt surf ace passes through the entire divertor region, the erosion due to sputtering is uniform along the belt. Estimated gross erosion rates for a 7-m belt at expected International Thermonuclear Experimental Reactor (ITER) conditions are 5 to 10 cm/burn-yr. Electromagnetic forces and secondary magnetic fields induced by the belt motion appear manageable for a sufficiently resistive or toroidally segmented belt. In situ deposition of a sacrificial carbon layer will be required to replace eroded material. Such a belt also offers the possibility of continuous removal of the plasma-codeposited carbon and tritium layer prior to deposition of the sacrificial carbon.