ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Marco Nassi
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 50-64
Technical Paper | Magnet System | doi.org/10.13182/FST93-A30174
Articles are hosted by Taylor and Francis Online.
The definitions and correlations existing between different terms used by physicists and engineers are clarified in order to deal with the assessment of the poloidal flux requirement in a fusion experiment. The theoretical formulation of both the Faraday and the Poynting methods, for the internal flux evaluation, is briefly reviewed. Heuristic expressions that allow estimates of internal flux consumption are reported for the specific case of an ignition experiment represented by the Ignitor configuration. The analytical and heuristic results for both internal and external poloidal flux requirements are checked against numerical evaluations carried out by using the TSC transport and magnetohydrodynamics code and the TEQ equilibrium code. A fairly good agreement between the different estimates is found. This suggests that simple heuristic expressions can be used to evaluate the poloidal flux requirement of future experiments, even if a detailed simulation of the plasma current penetration process is strongly recommended to correctly assess and optimize the resistive poloidal flux consumption. Finally, the poloidal flux requirement for different plasma scenarios in the Ignitor experiment is compared with the magnetic flux variation that can be delivered by the poloidal field system.