ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hideaki Matsuura, Yasuyuki Nakao, Yutaka Tanaka, Kazuhiko Kudo
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 17-27
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30171
Articles are hosted by Taylor and Francis Online.
Formation of an effective ion tail due to neutral beam injection heating during startup in D-3He plasmas is investigated. The main idea is to reduce the energy input required for startup heating as well as the 14-MeV neutron yield by creating an effective tail The optimal beam injection energy and beam species are first estimated by solving the steady-state Fokker-Planck equations for the injected species and for tritons. The startup of D-3He plasma is simulated by simultaneously solving the time-dependent power balance and particle conservation equations together with the Fokker-Planck equations. As a result of tail formation in the fuel ion distribution, both the total input energy and the 14-MeV neutron yield during the startup phase are reduced by ∼20% from the values for Maxwellian plasma.