ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Michael Bittner, Andreas Meister, Dieter Seeliger, Rainer Schwierz, Peter Wustner
Fusion Science and Technology | Volume 23 | Number 3 | May 1993 | Pages 346-352
Technical Notes on Cold Fusion | doi.org/10.13182/FST93-A30165
Articles are hosted by Taylor and Francis Online.
Experiments with two massive deuterium-loaded palladium samples designed to search for deuteron-deuteron (d-d) fusion during thermal degassing are described. In the heavier of the two samples, which has a total mass of ∼0.5 kg, during deuterium expulsion from the metal, a significant neutron excess count rate was detected by two independent NE-213 scintillation neutron detectors. The maximum time-dependent excess count rate corresponds to a d-d reaction rate of (3 ± 1) × 10−25 per deuteron pair per second. From detector pulse high spectra, the energy of the neutrons is determined to be ∼2.5 MeV, as expected for d-d fusion neutrons.