ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Maxime Rabeau, John H. Pitts, Jean-François Mengué, Gérard Maurin
Fusion Science and Technology | Volume 23 | Number 3 | May 1993 | Pages 337-341
Techincal Note | ICF Driver Technology | doi.org/10.13182/FST23-337
Articles are hosted by Taylor and Francis Online.
Geometrical arrangements for locating the large number of beamlets used in high-energy laser fusion facilities around a target chamber, suitable for the 1- to 2-MJ Phebus upgrade facility, are compared. The beamlets are clustered together and enter the target chamber area from two opposite poles. Beamlets from two different amplifier regions are interlaced around four pairs of conical surfaces, so that more symmetrical illumination of indirect drive targets is possible even when only some of the amplifiers are operational. A passive system is proposed to protect the focus lenses from X rays, ion debris, and internal target chamber pollutants. The system includes sacrificial debris shields and a static, ∼2-m length of incondensable gas. A crosswise orientation allows for maximum operational flexibility; an in-line orientation uses three fewer mirrors per beamlet but requires a larger target chamber room and longer laser bays. Neutron protection includes concrete shielding and also an ∼1- to 2-m-thick water shield positioned just inside the periphery of the target chamber room. Selected low-activation materials are used as much as possible inside the water shield to minimize the recovery time after a shot.