ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
S. K. Ho, F. J. Brechtel, T. Kenneth Fowler
Fusion Science and Technology | Volume 23 | Number 3 | May 1993 | Pages 321-330
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST93-A30160
Articles are hosted by Taylor and Francis Online.
A simplified scaling law approach for calculating activation-induced radioactive inventories is extended and applied. The goal is to provide a sufficiently accurate, very fast method to calculate activation radioactive inventories as an integral part of tokamak system design codes. The method is applied to a silicon carbide first wall, but now all relevant daughter nuclides are considered, and the results are used to calculate various indexes that can be used to characterize environmental and safety characteristics of fusion reactors. The indexes obtained from the scaling laws are in reasonable agreement with those derived from inventories calculated directly from more time-consuming Monte Carlo methods.