ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
W. M. Stacey, Jr.
Fusion Science and Technology | Volume 23 | Number 2 | March 1993 | Pages 157-166
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30145
Articles are hosted by Taylor and Francis Online.
A new “rotational” energy flux is derived for highly collisional impurity ions in tokamaks with strong unbalanced neutral beam injection (NBI). The derivation is based on a consistent ordering of kinetic theory. The rotational flux, which is of a collisional origin and vanishes when the rotation vanishes, is ∼ε2δ−1 times larger than the conventional neoclassical energy flux. This rotational energy flux and a previously derived momentum flux of a similar nature reproduce the experimentally observed relation between momentum and ion energy transport, τφ/τi ∼ O(1), χφ/χi ∼ O(1). The magnitude of χi resulting from this rotational energy flux is the same as is observed in many tokamaks with strong unbalanced NBI. This suggests the control of energy confinement via the control of impurity content in strongly rotating tokamak plasmas.