ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
W. M. Stacey, Jr., G. W. Neeley
Fusion Science and Technology | Volume 23 | Number 2 | March 1993 | Pages 139-156
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30144
Articles are hosted by Taylor and Francis Online.
The control of plasma rotation in a tokamak by controlling the impurity content is investigated. A neoclassical theory for momentum transport by collisional ions in a tokamak plasma with strong neutral beam injection and strong rotation is developed. A consistently ordered hierarchy of approximations to the kinetic equation are derived and solved to obtain expressions for particle flows, the radial electric field, poloidal asymmetries in density and potential, and the radial flux of toroidal angular momentum and the associated torque that acts to damp toroidal rotation. Upon decomposing the first-order distribution function into gyroangle-dependent and gyroangle-averaged components, neoclassical gyroviscosity is recovered from the former, and a new “rotational” viscosity of a collisional origin is recovered from the latter. The same viscosity coefficient and functional form are obtained for both types of viscosity.