ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Om Prakash Joneja, Michel Schaer, Cherif Sahraoui, J.-P. Schneeberger, Vijay R. Nargundkar, K. Subba Rao
Fusion Science and Technology | Volume 23 | Number 4 | July 1993 | Pages 408-418
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30133
Articles are hosted by Taylor and Francis Online.
It is important to know the neutron yield, the spatial distribution, and the spectra emitted from a generator when performing any quantitative measurements. An extremely intense (d, t)-driven neutron generator is used in the LOTUS fusion blanket program. The planned measurements include integral tritium and 233U breeding as well as heat deposition rate studies in blankets representative of fusion reactor blankets. Quantitative estimates of these integral parameters demand precise determination of the characteristics of the neutron generator. Extensive foil activation measurements have been carried out to determine the reaction rate distribution and the neutron yield by a proposed method. A comparison between the calculated and measured reaction rates and the distribution confirm the adequacy of the cross-section sets and the geometry description of the complete experimental arrangement.