ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Om Prakash Joneja, J.-P. Schneeberger, Vijay R. Nargundkar
Fusion Science and Technology | Volume 23 | Number 4 | July 1993 | Pages 400-407
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30132
Articles are hosted by Taylor and Francis Online.
Integral tritium production rate (TPR) measurements are important in comparisons of calculations to ascertain the suitability of computer codes and cross-section sets used in calculation. At the LOTUS facility, one of the objectives is to make measurements with different types of pure fusion and hybrid blankets and compare the results with calculations. Since the concrete cavity housing the blankets is small, it is of direct relevance to determine the influence of room-reflected neutrons on the integral TPR and, if possible, to reduce this effect by special absorbers. The effects on the TPR of a stainless steel—natural lithium—graphite-reflected blanket due to the concrete structure, B4C filter, and boron-loaded sheets covering the assembly are studied. Calculations are performed by the MCNP Monte Carlo code. Since the room-returned component depends strongly on the composition of the concrete and, moreover, does not correspond to a real blanket situation, it is advisable to compare measurements with calculations for the region where such interference is minimal. A central region measuring 30.15 × 26.25 × 60 cm3 is identified for the purpose of comparison. In addition to calculations for a fully homogenized blanket, the important central blanket region is considered in the form of rods, and the remaining blanket as a homogeneous region, to assess the effect of neutron streaming on the TPR of the assembly. An experiment is done by irradiating several Li2CO3 probes positioned in each tube so that the central region of interest is fully covered. The activity of the probes is measured by the standard liquid scintillation method, and the TPR for the entire region can be derived from the experimental reaction rate data. The complete details of the calculational model and the experimental procedure are provided. Good agreement is found between the calculated and experimental TPRs after accounting for various sources of errors. This suggests that the three-dimensional description of the source and the blanket arrangement employed for the calculations are quite satisfactory.