ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. Richard Smith, John J. King, J. Wiley Davidson, Morris E. Battat
Fusion Science and Technology | Volume 23 | Number 1 | January 1993 | Pages 51-67
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30119
Articles are hosted by Taylor and Francis Online.
An experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consisted of determining the ratio of 56Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. The superior isotropy and flat energy response of the manganese bath gives this detector an advantage over the inhomogeneous and anisotropic detector arrays used in previous experiments for measurements of this type. Values of the multiplication have been obtained for beryllium samples of four thicknesses. The measurements are affected by several systematic effects characteristic of the manganese bath. The values of these systematic corrections are established by a combination of calculation and experimental parameterization. Detailed calculations of the multiplication and all the systematic effects are made by using a highly detailed three-dimensional Monte Carlo geometry model with the MCNP Monte Carlo program. The Young-Stewart and the ENDF/BVI evaluations for beryllium are used in the analysis. Both data sets produce multiplication values that are in excellent agreement with the manganese bath measurements for both raw and corrected values of the multiplication. It is concluded that there is no real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium.