ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. Richard Smith, John J. King, J. Wiley Davidson, Morris E. Battat
Fusion Science and Technology | Volume 23 | Number 1 | January 1993 | Pages 51-67
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30119
Articles are hosted by Taylor and Francis Online.
An experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consisted of determining the ratio of 56Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. The superior isotropy and flat energy response of the manganese bath gives this detector an advantage over the inhomogeneous and anisotropic detector arrays used in previous experiments for measurements of this type. Values of the multiplication have been obtained for beryllium samples of four thicknesses. The measurements are affected by several systematic effects characteristic of the manganese bath. The values of these systematic corrections are established by a combination of calculation and experimental parameterization. Detailed calculations of the multiplication and all the systematic effects are made by using a highly detailed three-dimensional Monte Carlo geometry model with the MCNP Monte Carlo program. The Young-Stewart and the ENDF/BVI evaluations for beryllium are used in the analysis. Both data sets produce multiplication values that are in excellent agreement with the manganese bath measurements for both raw and corrected values of the multiplication. It is concluded that there is no real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium.