ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Erik L. Vold, Anil K. Prinja, Farrokh Najmabadi, Robert W. Conn
Fusion Science and Technology | Volume 22 | Number 2 | September 1992 | Pages 208-226
Technical Paper | Plasma Engineering | doi.org/10.13182/FST92-A30104
Articles are hosted by Taylor and Francis Online.
A one-group diffusion approximation to neutral transport in a plasma is incorporated in a two-dimensional (θ-r) computational code, EPIC, coupling transport and recycling of the plasma-neutral fluids in a consistent finite discretization scheme. Boundary conditions accommodate particle recycling at the edge-core plasma interface. Neutral particle reflection from the pumping duct characterizes a given pumping system. Marginal validity of the diffusion approximation motivates extensive comparisons of the results with Monte Carlo (DEGAS) transport calculations. In prescribed and in self-consistently computed plasma solutions, the neutral diffusion results are comparable with the Monte Carlo results for radial and poloidal profiles of atomic neutral density over a wide range of limiter and divertor edge plasmas. Steady-state density and temperature contours for the Axially Symmetric Divertor Experiment (ASDEX) diverted tokamak are consistent with previous computations using fixed boundary conditions at the separatrix, but show reduced (20%) recycling attributed to the more realistic neutral atom transport by charge-exchange scattering in the diffusion model. Time-dependent plasma solutions with flux boundary conditions across the separatrix are more consistent with experimental data than results with fixed value boundary conditions at the separatrix. The flux across the separatrix is dominated by recycled particles from the edge plasma. A conclusion is that while the one-group diffusion treatment oversimplifies the physics of neutral transport, it is computationally efficient and adequate in accuracy and therefore well suited for edge plasma and for plasma-neutral recycling studies.