ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Erik L. Vold, Anil K. Prinja, Farrokh Najmabadi, Robert W. Conn
Fusion Science and Technology | Volume 22 | Number 2 | September 1992 | Pages 208-226
Technical Paper | Plasma Engineering | doi.org/10.13182/FST92-A30104
Articles are hosted by Taylor and Francis Online.
A one-group diffusion approximation to neutral transport in a plasma is incorporated in a two-dimensional (θ-r) computational code, EPIC, coupling transport and recycling of the plasma-neutral fluids in a consistent finite discretization scheme. Boundary conditions accommodate particle recycling at the edge-core plasma interface. Neutral particle reflection from the pumping duct characterizes a given pumping system. Marginal validity of the diffusion approximation motivates extensive comparisons of the results with Monte Carlo (DEGAS) transport calculations. In prescribed and in self-consistently computed plasma solutions, the neutral diffusion results are comparable with the Monte Carlo results for radial and poloidal profiles of atomic neutral density over a wide range of limiter and divertor edge plasmas. Steady-state density and temperature contours for the Axially Symmetric Divertor Experiment (ASDEX) diverted tokamak are consistent with previous computations using fixed boundary conditions at the separatrix, but show reduced (20%) recycling attributed to the more realistic neutral atom transport by charge-exchange scattering in the diffusion model. Time-dependent plasma solutions with flux boundary conditions across the separatrix are more consistent with experimental data than results with fixed value boundary conditions at the separatrix. The flux across the separatrix is dominated by recycled particles from the edge plasma. A conclusion is that while the one-group diffusion treatment oversimplifies the physics of neutral transport, it is computationally efficient and adequate in accuracy and therefore well suited for edge plasma and for plasma-neutral recycling studies.