ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Nikolai G. Basov, Nikolai I. Belousov, Peter A. Grishunin, Vladimir V. Kharitonov, Vladislav B. Rozanov, Valery I. Subbotin
Fusion Science and Technology | Volume 22 | Number 3 | November 1992 | Pages 350-355
Technical Paper | Nonelectrical Application | doi.org/10.13182/FST92-A30094
Articles are hosted by Taylor and Francis Online.
Incineration of 90Sr and 137Cs by thermal or fast neutrons is a very difficult problem. A 14-MeV neutron source based on inertial confinement fusion is a more appropriate choice. For the first time, the contribution of the (n,2n) reaction to incineration is revealed. The energy and nuclei balance for a system of several nuclear power plants and a fusion reactor for transmutation is analyzed. If the fusion reactor supports a sufficient number of nuclear power plants, it need not produce energy or tritium. Target and blanket material problems are considered. A laser fusion incinerator has the best prospects because of its fast neutron spectrum and high driver efficiency by target gain product.