ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Ezio Bittoni, Marcel Haegi
Fusion Science and Technology | Volume 22 | Number 4 | December 1992 | Pages 461-469
Alpha-Particle Special | doi.org/10.13182/FST92-A30081
Articles are hosted by Taylor and Francis Online.
The diffusion coefficient for the fast alpha particles produced in a thermonuclear plasma is derived numerically for the case of a magnetic field perturbed by ripple and magnetohydrodynamic (MHD) helical modes. It is found that this diffusion coefficient varies monotonously with the amplitude of the magnetic perturbations and that the transition from the classic to the stochastic regime occurs smoothly. The ripple perturbations as well as the MHD perturbations essentially affect the trapped-particle orbits. It is shown that above an MHD perturbation amplitude of some 10−3 of the total magnetic field, severe fast alpha-particle losses must be expected. Parametric studies have shown the dependence of the MHD helical diffusion coefficient on the amplitude of the perturbation, the helical mode number, and the energy of the alpha particles. An analytic expression for the MHD diffusion coefficient, based on these scalings, is proposed.