ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
George H. Miley, V. Varadarajan
Fusion Science and Technology | Volume 22 | Number 4 | December 1992 | Pages 425-438
Alpha-Particle Special | doi.org/10.13182/FST92-A30078
Articles are hosted by Taylor and Francis Online.
Adaptive control techniques can be applied to online gain tuning of tokamak thermokinetics. Here, a self-tuning control scheme is explored for both the plasma profile and power control. The distributed parameter system of the flux-surface-averaged one-dimensional transport equations is discretized by a nonlinear variational procedure. A finite-dimensional multiple-input/multiple-output control algorithm is derived using the linearized equations. A particular class of nonlinear three-parameter profiles is used for plasma density, temperature, and deuterium fraction profiles. Feedback gains are determined using a simplified minimum variance control law of self-tuning control. In the examples, normal multiple-output specifications for the plasma profile parameters for the density and power control are shown to be controllable by multiple-particle inputs alone.