ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Hosny M. Attaya, Mohamed E. Sawan, Gerald L. Kulcinski
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 115-123
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30061
Articles are hosted by Taylor and Francis Online.
The management and disposal of the radioactive waste generated in any nuclear system are major safety and environmental concerns for the deployment of such a power source. The waste disposal rating is compared for four structural materials when used in deuteriumtritium, deuterium-deuterium, and D-3He fusion reactors. The materials considered are HT-9, primary candidate alloy (PCA), Tenelon, and a modified HT-9. Generic models for the reactors are assumed such that each produces a fusion power ofI0MW/m of the axial length and has a sufficient shield/blanket to produce identical magnet damage rates. The latter is achieved by varying the material compositions and thicknesses. The results show that using the advanced fuel cycle D-3He, with its low neutron yield, alleviates the activation problems and also allows considerable volume reduction of the radioactive waste. This cycle also permits the use of conventional alloys and at the same time satisfies the regulations criteria for shallow land burial of the low-level waste. In addition, and because of the low damage rate in the D-3He reactors, the useful lifetimes of the materials are greatly increased.