ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Argonne investigates industrial SMR applications for postwar Ukraine
Argonne National Laboratory will play a leading role in planning and rebuilding a nuclear-generated clean energy infrastructure for postwar Ukraine as part of the lab’s focus on developing small modular reactor applications to help countries meet energy security goals. The latest plans, described in a November 19 article, were announced on November 16 at COP29 in Baku, Azerbaijan.
Hosny M. Attaya, Mohamed E. Sawan, Gerald L. Kulcinski
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 115-123
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30061
Articles are hosted by Taylor and Francis Online.
The management and disposal of the radioactive waste generated in any nuclear system are major safety and environmental concerns for the deployment of such a power source. The waste disposal rating is compared for four structural materials when used in deuteriumtritium, deuterium-deuterium, and D-3He fusion reactors. The materials considered are HT-9, primary candidate alloy (PCA), Tenelon, and a modified HT-9. Generic models for the reactors are assumed such that each produces a fusion power ofI0MW/m of the axial length and has a sufficient shield/blanket to produce identical magnet damage rates. The latter is achieved by varying the material compositions and thicknesses. The results show that using the advanced fuel cycle D-3He, with its low neutron yield, alleviates the activation problems and also allows considerable volume reduction of the radioactive waste. This cycle also permits the use of conventional alloys and at the same time satisfies the regulations criteria for shallow land burial of the low-level waste. In addition, and because of the low damage rate in the D-3He reactors, the useful lifetimes of the materials are greatly increased.