ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Hesham Y. Khater, William F. Vogelsang
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 107-114
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30060
Articles are hosted by Taylor and Francis Online.
A wide range of experimental radionuclide production cross sections has been collected for protons with energies similar to those protons produced in a D-3He fusion reactor. Proton energy-dependent cross sections (Ep ≤ 14.7 MeV) were used along with the proton stopping data of Anderson and Ziegler to produce a proton-induced thick-target radionuclide activation yield library. The library is linked to a computer program that calculates proton-induced radioactivity. Another potential source of radioactivity considered is the activity induced by neutrons produced from proton interactions with the reactor structure through (p, n) reactions. A computer program that evaluates the energy spectrum of these neutrons has been developed. The thick-target yield library and its associated programs have been used in an activation analysis study aimed at investigating the effect of proton-induced activity on the total level of radioactivity generated in Apollo-L2, a D-3He tokamak fusion power reactor. The proton-induced activity was more than two orders of magnitude less than the activity induced by the fusion neutrons at shutdown and more than one order of magnitude less ∼1 day after shutdown. The level of radioactivity induced by the (p, n) neutrons was found to be two to three orders of magnitude less than fusion neutron-induced radioactivity at any time following shutdown.