ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yasuyuki Nakao, Takuro Honda, Hideki Nakashima, Yoshinori Honda, Kazuhiko Kudo
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 66-72
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30055
Articles are hosted by Taylor and Francis Online.
The feasibility of using D-3He fuel in inertial confinement fusion is examined by using a hydrodynamics code that includes neutron and charged-particle transport routines. The use of a small amount of deuterium-tritium (D-T) ignitor is indispensable. Burn simulations are made for quasi-isobaric D-T/D-3He pellet models compressed to 5000 times the liquid density. Substantial fuel gains (∼500) are obtained from pellets having parameters ρRD-T = 3 g/cm2 and ρRtotal = 14 g/cm2 and a central spark temperature of 5 keV. The amount of driver energy needed to achieve these gains is estimated to be ∼30 MJ when the coupling efficiency is 10%. The driver energy requirement can be reduced by using spin-polarized D-T and D-3He fuels.