ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kunioki Mima, Kiyoshi Yoshikawa, Osami Morimiya, Haruhiko Takase, Hideaki Takabe, Yoneyoshi Kitagawa, Toshiki Tajima, Yasuji Kosaki, Sadao Nakai
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 56-65
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30054
Articles are hosted by Taylor and Francis Online.
A direct energy conversion method is proposed for a D-3He inertial confinement fusion reactor. The method utilizes inductive energy recovery through pickup coils in the plasma chamber in which mirror magnetic fields are applied. A method to reduce the problems regarding the handling of ultrahigh voltage inherent in energy recovery of this type is proposed that divides a one-turn pickup coil into a number of pickup segments both axially and azimuthally to reduce the output voltage per pickup segment so that it can be managed by near-term technologies. Analytical results predict that the expanding plasma energy is directly converted to electricity through the recovery circuit using capacitors with an efficiency of >80% when the plasma is assumed to expand cylindrically.