ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kunioki Mima, Kiyoshi Yoshikawa, Osami Morimiya, Haruhiko Takase, Hideaki Takabe, Yoneyoshi Kitagawa, Toshiki Tajima, Yasuji Kosaki, Sadao Nakai
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 56-65
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30054
Articles are hosted by Taylor and Francis Online.
A direct energy conversion method is proposed for a D-3He inertial confinement fusion reactor. The method utilizes inductive energy recovery through pickup coils in the plasma chamber in which mirror magnetic fields are applied. A method to reduce the problems regarding the handling of ultrahigh voltage inherent in energy recovery of this type is proposed that divides a one-turn pickup coil into a number of pickup segments both axially and azimuthally to reduce the output voltage per pickup segment so that it can be managed by near-term technologies. Analytical results predict that the expanding plasma energy is directly converted to electricity through the recovery circuit using capacitors with an efficiency of >80% when the plasma is assumed to expand cylindrically.