ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Akira Hasegawa, Liu Chen, Michael E. Mauel, Harry H. Warren, Sadayoshi Murakami
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 27-34
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30050
Articles are hosted by Taylor and Francis Online.
An ideal magnetic container for a D-3He fusion reactor must ensure both the stability of the confined plasma and the ability to control the confinement of fusion products. A dipole magnetic field may be suitable for D-3He fusion since it is predicted to be able to confine high-beta plasmas while allowing extraction of the high-energy charged fusion products for direct conversion as well as removal of fusion ash using resonant and / or nonresonant static magnetic perturbations. In a dipole magnetic field, even an equilibrium plasma having a phase-space density satisfying , where ψ is the flux function, has a steep enough pressure prof He for high fusion reactivity within the core yet is stable to low-frequency instabilities for local beta exceeding unity. At the outer wall, the plasma density and temperature can be very low, and stability can be obtained by line-tying or localized magnetic cusps, which can be used for direct conversion. New calculations of fusion product control and plasma stability with isotropic pitch-angle distributions are described. In addition, the parameters of a new, higher field dipole reactor design are discussed.