ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
L. Barleon, L. Bühler, K.J. Mack, R. Stieglitz, B.F. Picologlou, T.Q. Hua, C.B. Reed
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2197-2203
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30045
Articles are hosted by Taylor and Francis Online.
In designing a self-cooled liquid metal blanket based on the poloidal-toroidal flow concept, the magnitude of the MHD pressure drop and the character of the velocity distribution in the first wall coolant channels, that result from 3-dimensional MHD effects associated with the required right angle bends in the coolant flow, represent important design issues. To address these issues and to verify the relevant models used in the design, a joint MHD-experiment was conducted by Argonne National Laboratory (AND and Kernforschungszen-trum Karlsruhe (KfK). The test article was designed and built at ANL, and the experiments were performed at KfK's MEKKA facility using a 3.6 Tesla superconducting solenoid magnet and a eutectic sodium potassium alloy working fluid. In the experiments, detailed voltage and pressure distributions on the duct walls and voltage distributions within the liquid metal were measured under a variety of Hartmann numbers and interaction parameters. Representative results from these measurements are presented and compared to analytical predictions valid for very high interaction parameters (inertialess flow). Results indicate that deviation between analysis and experiment is confined to the immediate vicinity of the right angle sharp corner and that, for fusion blanket conditions, the 3-dimensional pressure drop in the radial-toroidal bend of an electrically separated single channel is small compared with the pressure drop of the radial flow.