ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
L. Barleon, L. Bühler, K.J. Mack, R. Stieglitz, B.F. Picologlou, T.Q. Hua, C.B. Reed
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2197-2203
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30045
Articles are hosted by Taylor and Francis Online.
In designing a self-cooled liquid metal blanket based on the poloidal-toroidal flow concept, the magnitude of the MHD pressure drop and the character of the velocity distribution in the first wall coolant channels, that result from 3-dimensional MHD effects associated with the required right angle bends in the coolant flow, represent important design issues. To address these issues and to verify the relevant models used in the design, a joint MHD-experiment was conducted by Argonne National Laboratory (AND and Kernforschungszen-trum Karlsruhe (KfK). The test article was designed and built at ANL, and the experiments were performed at KfK's MEKKA facility using a 3.6 Tesla superconducting solenoid magnet and a eutectic sodium potassium alloy working fluid. In the experiments, detailed voltage and pressure distributions on the duct walls and voltage distributions within the liquid metal were measured under a variety of Hartmann numbers and interaction parameters. Representative results from these measurements are presented and compared to analytical predictions valid for very high interaction parameters (inertialess flow). Results indicate that deviation between analysis and experiment is confined to the immediate vicinity of the right angle sharp corner and that, for fusion blanket conditions, the 3-dimensional pressure drop in the radial-toroidal bend of an electrically separated single channel is small compared with the pressure drop of the radial flow.