ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Kumar, M.A. Abdou, M.Z. Youssef, Y. Ikeda, C. Konno, Y. Oyama, K. Kosako, F. Maekawa, H. Maekawa
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2180-2189
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30043
Articles are hosted by Taylor and Francis Online.
Measurements of long-lived radioactivity are required to generate reliable data-base for qualifying fusion materials for reactor applications. However, long half lives necessitate intense 14 MeV neutron source, long irradiation time, long cooling time, and long counting time under low background. A 32h12m long irradiation, at mean source neutron intensity of 1.13 × 1012 n/s, was carried out on a number of foil packages kept near rotating neutron taiget source at FNS under USDOE/JAERI collaborative program in June 1989. Four identical foil packages were kept at 0, 45, 90, and ∼115 degrees to the d+ beam. Each package contained foils of Ag, Al, Dy, Hf, 151Eu, 153Eu, Hf, Ho, Ir, Mo, Re, Tb, and W. The objective was to measure decay γ radioactivity from 108mAg, 26Al, 158Tb, 152Eu, 150Eu, 94Nb, 186mRe, 178m2Hf, 192mIr, and 166mHo, among others. The half lives of these products range from 13.3y (152Eu) to 0.72My (26Al). These foils were interspersed with dosimetric foils of Nb and Zr. An estimated average fluence of ∼0.83 × 1015 n/cm2 (range: 0.47–1.65.1015 n/cm2) was obtained for the foil-package at zero degree. After cooling times ranging from 1.3 to 2 years, γ-spectroscopy of some of these foils has been completed. Analysis of measurements, done on foil package at zero degree, has been carried out using four radioactivity codes, REAC-2, DKRICF, ACT4 (THIDA-2), and RACC. REAC-2 is the only code that has data for most of the observed products; RACC has data for Al, Mo and W products only. Ratio of computed to experimentally measured activities varies from 4.10−5 to 377. Major update of all four cross-section libraries is recommended as waste classification of many fusion specific materials is likely to change dramatically.