ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Kumar, M.A. Abdou, M.Z. Youssef, Y. Ikeda, C. Konno, Y. Oyama, K. Kosako, F. Maekawa, H. Maekawa
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2180-2189
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30043
Articles are hosted by Taylor and Francis Online.
Measurements of long-lived radioactivity are required to generate reliable data-base for qualifying fusion materials for reactor applications. However, long half lives necessitate intense 14 MeV neutron source, long irradiation time, long cooling time, and long counting time under low background. A 32h12m long irradiation, at mean source neutron intensity of 1.13 × 1012 n/s, was carried out on a number of foil packages kept near rotating neutron taiget source at FNS under USDOE/JAERI collaborative program in June 1989. Four identical foil packages were kept at 0, 45, 90, and ∼115 degrees to the d+ beam. Each package contained foils of Ag, Al, Dy, Hf, 151Eu, 153Eu, Hf, Ho, Ir, Mo, Re, Tb, and W. The objective was to measure decay γ radioactivity from 108mAg, 26Al, 158Tb, 152Eu, 150Eu, 94Nb, 186mRe, 178m2Hf, 192mIr, and 166mHo, among others. The half lives of these products range from 13.3y (152Eu) to 0.72My (26Al). These foils were interspersed with dosimetric foils of Nb and Zr. An estimated average fluence of ∼0.83 × 1015 n/cm2 (range: 0.47–1.65.1015 n/cm2) was obtained for the foil-package at zero degree. After cooling times ranging from 1.3 to 2 years, γ-spectroscopy of some of these foils has been completed. Analysis of measurements, done on foil package at zero degree, has been carried out using four radioactivity codes, REAC-2, DKRICF, ACT4 (THIDA-2), and RACC. REAC-2 is the only code that has data for most of the observed products; RACC has data for Al, Mo and W products only. Ratio of computed to experimentally measured activities varies from 4.10−5 to 377. Major update of all four cross-section libraries is recommended as waste classification of many fusion specific materials is likely to change dramatically.