ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
C. Konno, F. Maekawa, Y. Ikeda, Y. Oyama, K. Kosako, H. Maekawa
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2169-2173
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30041
Articles are hosted by Taylor and Francis Online.
A series of experiments concerning fusion reactor shielding have been initiated for next fusion devices such as ITER. At the first step the bulk shielding experiments using SS316 materials were performed. Two experimental assemblies were adopted; one was a cylindrical assembly of SS316 (1.2 m in diameter and 1.12 m in thickness) and was set at 0.3 m from the D-T neutron source (Experimental assembly #1), and the other surrounded the D-T neutron source by a source reflector of 0.2 m-thick SS316 adding to the experimental assembly #1 (Experimental assembly #2). Neutron spectra from a few keV to 1 MeV and above 2 MeV were measured at the positions from 0 to 0.91 m in depth using small proton recoil gas proportional counters and a 14 mm-diam. NE213 spectrometer, respectively. Gamma-ray spectra and heating rates were measured using a 40 mm-diam. NE213 spectrometer and TLD, respectively. As neutron spectrum indices, fission and activation reaction rates were measured by fission counters of 235U and 238U, and foils of Al, Ti, Fe, Co, Ni, Zr, Nb, In and Au, respectively. The lower energy neutrons increased more than a few times in the assembly #2 compared with those in the assembly #1 due to neutrons scattered by the source reflector. It is expected that the nuclear data and calculation codes used in nuclear design of fusion devices will be examined based on these experimental data.