ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
C. Konno, F. Maekawa, Y. Ikeda, Y. Oyama, K. Kosako, H. Maekawa
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2169-2173
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30041
Articles are hosted by Taylor and Francis Online.
A series of experiments concerning fusion reactor shielding have been initiated for next fusion devices such as ITER. At the first step the bulk shielding experiments using SS316 materials were performed. Two experimental assemblies were adopted; one was a cylindrical assembly of SS316 (1.2 m in diameter and 1.12 m in thickness) and was set at 0.3 m from the D-T neutron source (Experimental assembly #1), and the other surrounded the D-T neutron source by a source reflector of 0.2 m-thick SS316 adding to the experimental assembly #1 (Experimental assembly #2). Neutron spectra from a few keV to 1 MeV and above 2 MeV were measured at the positions from 0 to 0.91 m in depth using small proton recoil gas proportional counters and a 14 mm-diam. NE213 spectrometer, respectively. Gamma-ray spectra and heating rates were measured using a 40 mm-diam. NE213 spectrometer and TLD, respectively. As neutron spectrum indices, fission and activation reaction rates were measured by fission counters of 235U and 238U, and foils of Al, Ti, Fe, Co, Ni, Zr, Nb, In and Au, respectively. The lower energy neutrons increased more than a few times in the assembly #2 compared with those in the assembly #1 due to neutrons scattered by the source reflector. It is expected that the nuclear data and calculation codes used in nuclear design of fusion devices will be examined based on these experimental data.