ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Insoo Jim, Mohamed Abdou
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2159-2168
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30040
Articles are hosted by Taylor and Francis Online.
Activation analysis for the cavity of the PROMETHEUS ICF design, which uses a wetted first wall protection scheme, has been performed. It has been found that the PROMETHEUS cavity produces about 0.9 Ci/W of thermal power at shutdown after the full 30 years operation, which is about the same amount of radioactivity of other ICF and MCF fusion designs with low activation materials. It was possible, however, to reduce the radioactivity inventory level in the shield by one to three orders of magnitude by introducing a new shield design that uses B4C, Pb, SiC and water instead of using the conventional concrete shield. Furthermore, the effect of using the spherical and cylindrical modeling on the prediction of radioactivity in the first wall has been studied. It has been found that the cylindrical model with a point neutron source at the center of the cylinder reduces the radioactivity of the short half-life products to about 80% of the values that would be obtained by using purely spherical modeling. Finally, the 210Po problem associated with the use of lead has been analyzed. It is shown that 210Po produced from neutron interactions with lead is more important than that produced from the bismuth impurity (40ppm) existing in lead if the machine is operated over ∼1 year.