ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Y. Khater, M. E. Sawan
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2051-2055
Safety, Recycling, and Waste Management | doi.org/10.13182/FST92-A30023
Articles are hosted by Taylor and Francis Online.
Radioactivity induced in a typical fusion power reactor was calculated for all elements with atomic number Z ≤ 84 and for different irradiation times. It was shown that the shutdown activity varies widely with the duration of the irradiation time. In general, the activity induced by radionuclides with half-lives that are significantly longer than the period of irradiation increases with increasing the irradiation time. On the other hand, the level of activity generated by any radionuclide with a half-life which is significantly shorter than the reactor life-time reaches a peak early during irradiation and then may starts to drop to lower value before the end of irradiation. The severity of this peaking is determined by the destruction rate of the parent element. The activities generated by long-lived nuclides (important for waste management) in any fusion reactor with life time in the order of 30 years reach their peak values at end-of-life. In the mean time, using the activity and decay heat values generated by short and intermediate-lived radionuclides at the end of reactor life to represent the worst case values used in safety analyses related to a loss of coolant accident (LOCA) and accidental release of radioactive inventory might lead to a substantial underestimation of the results.