ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
H. Y. Khater, M. E. Sawan, I. N. Sviatoslavsky, L. J. Wittenberg
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2023-2028
Safety, Recycling, and Waste Management | doi.org/10.13182/FST92-A30018
Articles are hosted by Taylor and Francis Online.
Activation and safety analysis has been performed for the chamber, shield and Li2O coolant of the inertial confinement fusion (IFE) reactor SOMBRERO. The total activities generated in the reactor graphite chamber and steel-reinforced concrete shield at shutdown are 0.054 and 10.12 MCi, respectively. The biological dose rate at the back of the shield drops to 1.6 mrem/hr after one day of shutdown allowing for hands-on maintenance. Radwaste classification has shown that both the chamber and shield would easily qualify as Class A low level waste (LLW) according to the 10CFR61 waste disposal concentration limits (WDL). At the same time, the Li2O granules would qualify as Class C LLW. The maximum public dose from atmospheric effluents is 0.93 mrem/yr. The dose is due to tritium and its maximum value occurs at the reactor site boundary which is 1 km away from the point of tritium release. Only a small fraction (0.44%) of the graphite first wall would be mobilized during a loss of coolant accident (LOCA). During such an accident, the shield temperature would only increase by a few degrees releasing a very small fraction of its radioactive inventory. The total tritium inventory in the containment building which is assumed to be released at the onset of a severe accident is 182.6 grams. The estimated whole body (WB) early dose from a severe accident resulting in the failure of the reactor containment is 2.22 rem. The very low off-site dose eliminates the need for N-stamp nuclear grade components in SOMBRERO.