ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. J. Dolan, G. R. Longhurst, E. Garcia-Otero
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1949-1954
Material and Tritium | doi.org/10.13182/FST21-1949
Articles are hosted by Taylor and Francis Online.
We have designed a vacuum disengager system to remove tritium from the Flibe (Li2BeF4) molten salt coolant of the HYLIFE-II fusion reactor. There is a two-stage vacuum disengager in each of three intermediate heat exchanger (IHX) loops. Each stage consists of a vacuum chamber 4 m in diameter and 7 m tall. As 0.2 mm diameter molten salt droplets fall vertically downward into the vacuum, most of the tritium diffuses out of the droplets and is pumped away. A fraction Φ ≈ 10−5 of the 8.6 MCi/day tritium source (from breeding in the Flibe and from unburned fuel) remains in the Flibe as it leaves the vacuum disengagers, and about 21 % of that permeates into the intermediate coolant loop, so about 20 Ci/day leak into the steam system. With Flibe primary coolant and a vacuum disengager, it appears that an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate Flibe vacuum disengager operation.