ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Y. Asaoka, H. Moriyama, Y. Ito
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1944-1948
Material and Tritium | doi.org/10.13182/FST92-A30004
Articles are hosted by Taylor and Francis Online.
The production behavior of irradiation defects in lithium oxide was studied by in-situ luminescence measurement under He+ beam irradiation. The luminescence peaks of 380 nm and 340 nm, which were associated with the production of F+ and F0 centers, respectively, were measured under various conditions such as temperature changes, and the production mechanism and kinetics of these irradiation defects were determined. The F+ centers are rather directly produced from Li2O with the partners of O- interstitials under Coulomb interactions while the F0 centers are produced with O2 through some diffusion processes. Although the F+ production dominates at lower temperatures, the F0 production increases with increasing temperature. The F0 centers would play an important role in the tritium recovery from ceramic breeder materials at actual blanket conditions.