ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Marc A. Firestone, Jonathan W. Morrow-Jones, Tak Kuen Mau
Fusion Science and Technology | Volume 32 | Number 3 | November 1997 | Pages 390-403
Technical Paper | Plasma Control Issues for Tokamaks | doi.org/10.13182/FST97-A3
Articles are hosted by Taylor and Francis Online.
Results for the first simulated comprehensive feedback control study for a tokamak operating in the fusion regime are presented. A standard Burning Plasma Experiment (BPX) design is the simulated reactor, but the results apply to any tokamak. Feedback gains are derived for specific classes of dynamic models and control objectives using model-based optimal control. An integrated control approach treats both kinetic and electromagnetic parameters and radial profiles. The control actuators include poloidal field coils, fast-wave and lower-hybrid current drive and heating sources, and pellet fuel injectors. Results show that the strongly coupled plasma parameters provide unintended secondary responses to controller inputs. In particular, attempts to modify the q-profile greatly affect the temperature and density profiles when the transport model incorporates International Thermonuclear Experimental Reactor (ITER) scaling. The hot, highly conductive plasma and poor source penetration in the nominal BPX discharge make the central q-values difficult to regulate. Fusion events also complicate the control efforts. Further, simple plasma circuit models are inadequate to account for a significantly evolving current profile. Proper understanding and use of integrated, model-based feedback control will avoid these pitfalls.