ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
K.M. Nikbin, G. A. Webster, N. Mitchell
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1905-1908
Magnetic | doi.org/10.13182/FST92-A29997
Articles are hosted by Taylor and Francis Online.
A single rectangular conductor jacket, including the surrounding insulation, has been modelled using finite element computational techniques. Such jackets are typical of the situation in a force flow cooled superconducting coil, where the jacket encloses the current carrying cable and the liquid helium coolant. Elliptical shaped cracks in the jacket have been included in the model to evaluate the stress intensity factors at the crack tip for three crack sizes at three different locations. Results using 3D finite elements are presented for a typical semi-elliptical surface crack in a single conductor jacket under tensile loading. It has been found that mesh and element sizes contribute to the variation in the values of the stress intensity factors calculated but that the relative accuracy of the results is generally within ±5%.