ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. D. Pillsbury, Jr., S. Fairfax, R. Granetz, S. Horne, I. Hutchinson, G. Tinios, S. Wolfe
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1898-1904
Magnetic | doi.org/10.13182/FST92-A29996
Articles are hosted by Taylor and Francis Online.
Alcator C-MOD is the latest in a line of high field, compact tokamaks built and operated by the Plasma Fusion Center at MIT. From the electromagnetic standpoint the machine is characterized by toroidal field (TF) coils with sliding joints, a poloidal field (PF) coil set that is inside the bore of the TF coils, and very thick-sectioned, toroidally continuous, vacuum vessel and metal structures. The tokamak is cooled to liquid nitrogen temperatures and pulsed. At the toroidal field of 9 T, the maximum temperature in the TF rises to approximately room temperature. The pulsed nature of the current together with this wide temperature range requires a solution of the coupled electromagnetic and thermal diffusion problems. In addition, eddy currents induced in the thick electrically conducting structures perturb the spatial and temporal distribution of the poloidal magnetic field in the vacuum chamber, especially for the plasma breakdown and initiation phase and during fast plasma position control. The transient electromagnetic field problem associated with these regimes must be taken into account in the design and analysis of the tokamak. The results of analyses of the electromagnetic behavior of Alcator C-MOD will be compared with measured data.