ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. E. Hechanova, M. S. Kazimi
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1880-1886
Plasma-Facing Component | doi.org/10.13182/FST92-A29993
Articles are hosted by Taylor and Francis Online.
A divertor composed of beryllium-coated copper tubes was analyzed for lifetime performance for near-term tokamaks. The thermal hydraulic analysis revealed the need for enhancing coolant heat transfer in order to avoid boiling in the water-cooled tube. The insertion of twisted tapes at the strike points was found to increase the heat transfer coefficient by more than 90 percent (from 59 to 113 kW/m2-K) and allow a 3 mm thick beryllium armor to remain below the desirable safety limit of 1073 K. Under normal operation, sputtering was estimated to result in an erosion rate of 0.0027 mm per 200-s pulse. Hard thermal quenches (plasma disruptions) were found to be the critical life-limiting divertor issue since up to 0.3 mm of beryllium could be vaporized per disruption event. This would require armor regeneration after 10 such disruptions. An analysis of the copper tube stresses suggests that primary and secondary stresses remain below their allowable limits under normal operations provided the ends of the plate are not restrained and allow for expansion.