ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
A. E. Hechanova, M. S. Kazimi
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1880-1886
Plasma-Facing Component | doi.org/10.13182/FST92-A29993
Articles are hosted by Taylor and Francis Online.
A divertor composed of beryllium-coated copper tubes was analyzed for lifetime performance for near-term tokamaks. The thermal hydraulic analysis revealed the need for enhancing coolant heat transfer in order to avoid boiling in the water-cooled tube. The insertion of twisted tapes at the strike points was found to increase the heat transfer coefficient by more than 90 percent (from 59 to 113 kW/m2-K) and allow a 3 mm thick beryllium armor to remain below the desirable safety limit of 1073 K. Under normal operation, sputtering was estimated to result in an erosion rate of 0.0027 mm per 200-s pulse. Hard thermal quenches (plasma disruptions) were found to be the critical life-limiting divertor issue since up to 0.3 mm of beryllium could be vaporized per disruption event. This would require armor regeneration after 10 such disruptions. An analysis of the copper tube stresses suggests that primary and secondary stresses remain below their allowable limits under normal operations provided the ends of the plate are not restrained and allow for expansion.