ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Kunugi, M. Akiba, M. Ogawa, O. Sato, M. Nakamura
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1868-1872
Plasma-Facing Component | doi.org/10.13182/FST92-A29991
Articles are hosted by Taylor and Francis Online.
The electron-gamma shower code EGS4 was applied to the simulation of energy deposition from runaway electrons in the plasma facing components of tokamaks. We calculated the energy deposition in the layers of carbon and molybdenum irradiated by electrons which energies were from 10 to 300MeV and the incident angles were from 0.5 to 25 degrees. The energy depositions calculated by EGS4 were compared to the results of GEANT3. EGS4 calculated higher total energy deposition rate in both carbon and molybdenum layers, and lower peak energy at the surface of molybdenum layer. EGS4 was also applied to the calculations of the energy depositions on three types of proposed ITER divertor targets. The results of these calculations showed that the peak deposited energies on metallic components were not affected by their geometrical shapes in case of low incident angle.