ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
K. Takase, M. Z. Hasan, T. Kunugi
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1840-1844
Plasma-Facing Component | doi.org/10.13182/FST92-A29986
Articles are hosted by Taylor and Francis Online.
Convective heat transfer in non-MHD laminar flow through rectangular channels in the first wall and limiter/divertor plates of fusion reactors has been analyzed numerically. Even for uniform heat flux, the Nusselt number (Nu) is not constant along the face of a rectangular channel, because the velocity is much smaller near a corner. For uniform heat flux, Nu varies by 67% from the center of a side to the corner (6.7 to 2.2). Therefore, the corners of a rectangular channel are possible hot-spot areas of concern for thermal-hydraulic designs. In addition, the surface heat flux on coolant channels in the plasma-facing components varies circumferentially. This nonuniformity of surface heat flux also affects the Nu. At the center of a side, Nu can be reduced from 6.7 to 2.8, i.e. by about 58%. For large nonuniformity of surface heat flux, the Nu at some locations can become infinity or negative; infinity, when the coolant/wall interface temperature becomes equal to the coolant bulk temperature and, negative, when the bulk temperature becomes larger than the interface temperature at these locations. The entry length is also increased due to the nonuniformity of surface heat flux. This increase can be as much as 4 times the entry length for uniform heat flux. For safe thermal-hydraulic designs of the first wall and limiter/divertor plates of fusion reactors, these effects must be taken into consideration.