ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Ulrickson, G. Barnes, H.M. Fan, G. Labik, D. Loesser, L. Lontai, D.K. Owens
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1817-1822
Plasma-Facing Component | doi.org/10.13182/FST92-A29982
Articles are hosted by Taylor and Francis Online.
Carbon fiber composite (CFC) materials have been used as the plasma facing surface on limiters in TFTR since 1989. We changed from all POCO graphite tiles on the inner bumper limiter (BL) to about 1/3 CFC tiles in the high heat flux area because of tile failures with heating powers up to 20 MW. The RF limiters (RFL), which were designed to protect the radio-frequency antennas from plasma heat flux, were designed with CFC material. This paper discusses the design issues related to the CFC materials, our experience with material property variations in large production runs, and our operational experience with CFC limiters. The replacement BL tiles were made from a 3D CFC material. The RFL tiles were made from a 2D CFC. The use of 2D CFC material was molded to near net shape. The tiles were required to withstand up to 105 cycles of 50 MW of heating power for a duration of 2 s. Determination of the minimum material properties was one of the major design issues. The fabrication of the BL tiles required production of about 35 large billets of 3D CFC material. The fabrication of the RFL tiles required production of about 160 tile blanks. We found substantial variation in the material properties of the finished parts. The distribution of the material property data is discussed. In the case of the RFL tiles some parts did not meet the required properties because of the non-standard nature of the fabrication. After nearly two years of operation on the CFC tiles, none of the CFC tiles have failed. The only damage observed on the CFC tiles is a slight darkening of the tile when it is heated to the sublimation point by the disruption heat loads. Recommendations of the best design and fabrication strategies for CFC plasma facing components are made.