ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. T. McGrath, A. J. Russo, R. B. Campbell, R. D. Watson
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1805-1816
Plasma-Facing Component | doi.org/10.13182/FST92-A29981
Articles are hosted by Taylor and Francis Online.
Tokamaks currently in operation deposit on the order of 1–30 MW/m2 onto plasma facing surfaces during normal operation and hundreds of MW/m2 for shorter periods of time (0.1–3 ms) during disruptions. Disruption deposited energies on future high-power tokamaks may be well in excess of 20 MJ/m2 Design of plasma facing components (PFCs) for such severe environments requires considerable advancements in materials development, armor tile bonding to actively cooled substrates, heat transfer, and many other areas of engineering concern. Considerable improvements in PFC performance, reliability and lifetime can also be accomplished through improved understanding and control of the edge plasma boundary layer. This paper covers both engineering and edge plasma physics issues that must be addressed in the development of reliable PFCs for ITER. Several specific examples are addressed since a complete treatment of all critical development issues would be lengthy. Topics covered include impurity generation and transport in the boundary layer plasma, materials response to intense pulsed disruption heat loads, runaway electron generation during disruptions, high heat flux performance and PFC fabrication issues. These topics are illustrative examples of the variety of complex issues that must be addressed in the development and design of PFCs.