ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. A. Mogahed, G. A. Emmert, M. E. Sawan
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1739-1743
Magnetic Fusion Reactor and Systems Studies | doi.org/10.13182/FST92-A29972
Articles are hosted by Taylor and Francis Online.
Three different startup scenarios, one using pure D-3He, one using pure D-T to assist reaching the D-3He operating point, and one using a mixture of D-T-3He, have been analyzed, for the startup of ARIES-III. ARIES-III is a conceptual D-3He tokamak fusion power reactor operating in a second stability configuration. The process of starting the plasma up and bringing it to the desired operating point has been optimized to minimize the need for auxiliary ICRF heating during startup. In the second and third startup scenarios, seeding the plasma with tritium during startup reduces the amount of ICRF power required, but leads to a 14 MeV neutron pulse. Neutronics calculations have been performed to generate the nuclear heating profiles in the first wall and shield. The neutronics results were scaled with the neutron power to determine the nuclear heating profiles at different times during the startup phase. In this work, a two-dimensional transient thermal analysis is performed for the startup phases and the temperature distribution in the first wall and shield as a function of time is presented. The analysis is performed for the worst conditions at the midplane of the outboard region.