ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y-K. M. Peng, J. D. Galambos, P. C. Shipe
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1729-1738
Magnetic Fusion Reactor and Systems Studies | doi.org/10.13182/FST92-A29971
Articles are hosted by Taylor and Francis Online.
Small steady-state tokamaks for testing divertors and fusion nuclear technologies are considered. Based on present physics and technology data and extrapolation to reduced R0/a, H-D-fueled tokamaks with R0 ∼ 0.6–0.75 m, R0/a ∼ 1.8–2.5, and Bt0 ∼ 1.4–2.2 T can be driven with Ptot ∼ 4.5 MW to maintain Ip ∼ 0.5 MA and produce the ITER-level plasma edge and divertor conditions. Given an adequate steady-state divertor solution and Q∼1 operation based on fusion through the suprathermal component, D-T-fueled tokamaks with R0 ∼ 0.8 m, R0/a ∼ 2, and Bt0 ∼ 4 T can be driven with Ptot ∼ 15 MW to maintain Ip ∼ 4.6 MA and produce a peak neutron wall load WL ∼ 1 MW/m2. Such devices appear possible if the plasma properties at the lower R0/a remain tokamak-like and, for the D-T case, an unshielded center core is feasible. The use of a single conductor as the inboard leg of the toroidal field coils for this purpose is discussed. The physics issues and the design features are identified for such tokamaks with a testing duty factor goal of 10–20%.