ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M.A. Hoffman, W.O. Muller
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1683-1687
Plasma Engineering | doi.org/10.13182/FST92-A29964
Articles are hosted by Taylor and Francis Online.
One of the key objectives of the CFAR (compact fusion advanced Rankine) cycle concept for advanced tokamak reactors is to reduce the capital costs of the power conversion system and the balance of plant. A design of the heat rejection system has been done as part of a preliminary cost study in order to evaluate the capital costs of this fusion power plant concept. This system has been optimized to yield the minimum capital cost subject to constraints on the size of the desuperheater/condenser heat exchangers, the pressure drops and the pumping power required for the heat-rejection coolant. The results of this study including estimates of the cost of electricity for the CFAR concept with and without a bottoming plant are reported.