ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T.L. Grimm, K.E. Kreischer, W.C. Guss, R.J. Temkin
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1648-1653
Plasma Engineering | doi.org/10.13182/FST92-A29957
Articles are hosted by Taylor and Francis Online.
A 200–300 GHz high power pulsed gyrotron oscillator has recently been operated in a 14 T Bitter magnet. The design of this pulsed gyrotron is based on continuous wave (CW) constraints. A single cylindrical waveguide cavity with linear tapers on each end was tested using two magnetron injection guns (MIG). The first produces a large electron beam which excites whispering gallery modes and the second produces a smaller beam that will couple to volume modes. The highest output power of 970 kW was generated at 229 GHz in the TE34,6 using the large MIG with a 59 A, 92 kV electron beam. This corresponds to an efficiency of 18% which was the highest produced in this mode. Similar efficiencies were obtained at 202 and 213 GHz using the same MIG and at 290 GHz using both the large and small MIG. The experimental power and efficiency is about a factor of two below the single mode theoretical predictions, even at low current. A detailed parameterization of the TE34,6 mode's operating range, measurements of the beam's velocity ratio (α), and comparison to previous high frequency work at MIT imply that mode competition is one important cause of the low experimental power and efficiency.