ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T.L. Grimm, K.E. Kreischer, W.C. Guss, R.J. Temkin
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1648-1653
Plasma Engineering | doi.org/10.13182/FST92-A29957
Articles are hosted by Taylor and Francis Online.
A 200–300 GHz high power pulsed gyrotron oscillator has recently been operated in a 14 T Bitter magnet. The design of this pulsed gyrotron is based on continuous wave (CW) constraints. A single cylindrical waveguide cavity with linear tapers on each end was tested using two magnetron injection guns (MIG). The first produces a large electron beam which excites whispering gallery modes and the second produces a smaller beam that will couple to volume modes. The highest output power of 970 kW was generated at 229 GHz in the TE34,6 using the large MIG with a 59 A, 92 kV electron beam. This corresponds to an efficiency of 18% which was the highest produced in this mode. Similar efficiencies were obtained at 202 and 213 GHz using the same MIG and at 290 GHz using both the large and small MIG. The experimental power and efficiency is about a factor of two below the single mode theoretical predictions, even at low current. A detailed parameterization of the TE34,6 mode's operating range, measurements of the beam's velocity ratio (α), and comparison to previous high frequency work at MIT imply that mode competition is one important cause of the low experimental power and efficiency.