ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Chas. W. von Rosenberg, Jr.
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1600-1604
Inertial Fusion Driver | doi.org/10.13182/FST92-A29948
Articles are hosted by Taylor and Francis Online.
The laser driver system we describe is coupled to the SOMBRERO reactor concept. This is the Inertial Fusion for Energy (IFE) design concept generated by the W.J. Schafer Team for a recent DOE study1. The nominal plant design has 1 GW electrical output and requires a KrF laser driver system that supplies 3.4 MJ per pulse onto a spherically symmetric, direct drive target, at a repetition rate of 6.7 pps. We describe an architecture which results from the constraints of what must be supplied at the target, coupled with a final amplifier design which makes use of e-beam pumped, angularly multiplexed, 60 kJ final amplifier cavities, recent technology advancements in e-beams and pulsed power, and which has been optimized for system efficiency. Driver system efficiency of more than 7% (“wall plug”), and an effective efficiency of more than 9%, obtained through utilization of laser waste heat, are projected.