ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE announces awards for three university nuclear education outreach programs
The Department of Energy’s Office of Nuclear Energy has announced more than $590,000 in funding awards to help three universities enhance their outreach in nuclear energy education. The awards, which are part of the DOE Nuclear Energy University Program (NEUP) University Reactor Sharing and Outreach Program, are primarily designed to provide students in K-12, vocational schools, and colleges with access to university research reactors in order to increase awareness of nuclear science, engineering, and technology and to foster early interest in nuclear energy-related careers.
Chas. W. von Rosenberg, Jr.
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1600-1604
Inertial Fusion Driver | doi.org/10.13182/FST92-A29948
Articles are hosted by Taylor and Francis Online.
The laser driver system we describe is coupled to the SOMBRERO reactor concept. This is the Inertial Fusion for Energy (IFE) design concept generated by the W.J. Schafer Team for a recent DOE study1. The nominal plant design has 1 GW electrical output and requires a KrF laser driver system that supplies 3.4 MJ per pulse onto a spherically symmetric, direct drive target, at a repetition rate of 6.7 pps. We describe an architecture which results from the constraints of what must be supplied at the target, coupled with a final amplifier design which makes use of e-beam pumped, angularly multiplexed, 60 kJ final amplifier cavities, recent technology advancements in e-beams and pulsed power, and which has been optimized for system efficiency. Driver system efficiency of more than 7% (“wall plug”), and an effective efficiency of more than 9%, obtained through utilization of laser waste heat, are projected.