ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1536-1540
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29938
Articles are hosted by Taylor and Francis Online.
In the HYLIFE inertial confinement fusion reactor, fusion occurs in pulses several times every second, x rays ablate material from the array of molten 2LiF-BeF2 salt (Flibe-Li2BeF4) jets used to protect the reactor vessel, generating a hot, dissociated and partially ionized vapor. Further evaporation of the blanket material occurs as the vapor radiates to the jets. Eventually this vapor must be condensed to restore sufficient vacuum for the next shot. The rate of condensation determines the permissible fusion repetition rate. With extensive dissociation, the chemical composition in the reactor will be complicated. A good understanding of the chemical kinetics is essential for the calculation of the composition and, therefore, for the accurate calculation of the vapor condensation rate. Analysis presented here shows that recombination rates will be fast compared to fluid dynamic and condensation time scales for a major portion of the condensation process, making it possible to assume quasi-equilibrium in the vapor phase.