ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1531-1535
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29937
Articles are hosted by Taylor and Francis Online.
In the HYLIFE-II inertial confinement fusion reactor the deposition of high energy neutrons in protective molten salt jets can induce a pressure rise of several hundreds of megapascal in the liquid jets almost instantly. The subsequent relaxation of the liquid jets is very important in determining of changes of the liquid blanket configuration. The result of this relaxation process directly affects the gas dynamics, the condensation conditions and the chamber design. A 1-D compressible analysis was performed for the Flibe cylindrical jets in the HYLIRE-II reactor. The numerical results show that those jets which are close to the target will break up due to the large initial pressure buildup. The study also reveals that the jets will tend to break into large annulus/annuli rather than thousands of small droplets. A simple analysis for slab jets is also conducted in this work.