ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1525-1530
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29936
Articles are hosted by Taylor and Francis Online.
Molten Flibe (Li2BeF4) salt is a candidate material for the liquid blanket in the HYLIFE-II inertial confinement fusion reactor. The thermodynamic properties of the liquid are very important for the study of the thermohydraulic behavior of the concept design, particularly, the compressible analysis of the blanket isochoric heating problem. In this paper, a soft sphere model equation of state, which was used for describing liquid metals previously, is deployed with slight modifications for fitting the available experimental data for liquid Flibe. It is found that within the available temperature range the model gives a good agreement with experimental data for density, enthalpy and speed of sound. Additionally the model provides reasonable isotherms, spinodal line and predicts a “critical point”. The results show that the model has good thermodynamic behavior, although for a material like Flibe the “critical point” phenomenon is more complex than for pure component material.