ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson, Philip Colella
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1520-1524
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29935
Articles are hosted by Taylor and Francis Online.
The HYLIFE-II ICE reactor uses molten salt, Flibe (Li2BeF4), as a liquid blanket material. After the microexplosion of the D-T capsule in the center of the chamber the emitted x rays ablate a thin layer of the liquid and generate a high temperature plasma. This paper uses a second order Godunov numerical method to solve for the gas dynamics of the ablated material in the central cavity. Because the initial ablation has very small characteristic length scale (about 10 microns), a time varying mesh spacing is adapted. The equation of state for Flibe vapor is used in the calculation along with the parameters for the HYLIFE-II design. The results reveal that the gas dynamic response is sensitive to the initial energy deposition in the liquid and that two- dimensional shock effects are very important in determining the pressure and density field in the central cavity. By neglecting radiation heat transfer, the current calculation results give a conservative estimation of the shock strength.