ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
P. J. Estreich, S. L. Ostrow, K. Haller
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1506-1513
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29933
Articles are hosted by Taylor and Francis Online.
This paper reports on the design of the thermal energy conversion system for the Prometheus-L inertial fusion energy power plant, emphasizing features affected by characteristics of the fusion thermal power source. Ebasco Services is part of a team led by McDonnell Douglas, and funded by the Department of Energy, developing power plant designs for both laser and heavy-ion drivers with the goals of advancing the state of Inertial Fusion Energy design, identifying critical issues, and providing a basis of comparison with Magnetic Fusion Energy design studies. The thermal cycle design is based on an advanced supercritical double reheat Rankine cycle which utilizes as its heat sources the liquid lead coolant from the first wall protection, the helium coolant for the blanket and waste heat from the laser-driver system.